64 research outputs found

    Steklov Spectral Geometry for Extrinsic Shape Analysis

    Full text link
    We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde

    BPM: Blended Piecewise Moebius Maps

    Full text link
    We propose a novel Moebius interpolator that takes as an input a discrete map between the vertices of two planar triangle meshes, and outputs a smooth map on the input domain. The output map interpolates the discrete map, is continuous between triangles, and has low quasi-conformal distortion when the input map is discrete conformal. Our map leads to considerably smoother texture transfer compared to the alternatives, even on very coarse triangulations. Furthermore, our approach has a closed-form expression, is local, applicable to any discrete map, and leads to smooth results even for extreme deformations. Finally, by working with local intrinsic coordinates, our approach is easily generalizable to discrete maps between a surface triangle mesh and a planar mesh, i.e., a planar parameterization. We compare our method with existing approaches, and demonstrate better texture transfer results, and lower quasi-conformal errors

    AmiGo: Computational Design of Amigurumi Crochet Patterns

    Full text link
    We propose an approach for generating crochet instructions (patterns) from an input 3D model. We focus on Amigurumi, which are knitted stuffed toys. Given a closed triangle mesh, and a single point specified by the user, we generate crochet instructions, which when knitted and stuffed result in a toy similar to the input geometry. Our approach relies on constructing the geometry and connectivity of a Crochet Graph, which is then translated into a crochet pattern. We segment the shape automatically into chrochetable components, which are connected using the join-as-you-go method, requiring no additional sewing. We demonstrate that our method is applicable to a large variety of shapes and geometries, and yields easily crochetable patterns.Comment: 11 pages, 10 figures, SCF 202

    Distributed Computation of Virtual Coordinates

    Get PDF
    International audienceSensor networks are emerging as a paradigm for future computing, but pose a number of challenges in the fields of networking and distributed computation. One challenge is to devise a greedy routing protocol – one that routes messages through the network using only information available at a node or its neighbors. Modeling the connectivity graph of a sensor network as a 3-connected planar graph, we describe how to compute on the network in a distributed and local manner a special geometric embedding of the graph. This embedding supports a geometric routing protocol based on the ”virtual” coordinates of the nodes derived from the embedding
    corecore